Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Find the arc length of a central angle 300 degrees in a circle whose radius is 2 inches? help now ASP I NEED HELP A.10 π/ 3 in
B.1200 in
C. 22 π/ 3 in
D. 75 in.


Sagot :

[tex]\text{Arc length } = \frac{\theta}{360}2\pi r [/tex]

[tex]= (\frac{300}{360})2\pi (2)[/tex]

[tex]= 4\pi(\frac{300}{360})[/tex]

[tex]= 4\pi(\frac{5}{6})[/tex]

[tex]= \frac{20\pi}{6}[/tex]

[tex]= \frac{10\pi}{3} \text{ in}[/tex]

Answer:  A. [tex]\dfrac{10}{3}\pi\ in.[/tex]

Step-by-step explanation:

The formula to calculate the arc length with central angle x and radius r given by :-

[tex]l=\dfrac{x}{360^{\circ}}\times2\pi r[/tex]

Given: Radius of circle 'r'= 2 inches

The central angle 'x'= [tex]300^{\circ][/tex]

Now, the arc length of a central angle [tex]300^{\circ][/tex] in a circle whose radius is 2 inches is given by :-

[tex]l=\dfrac{300^{\circ]}{360^{\circ}}\times2\pi (2)\\\\\Rightarrow\ l=\dfrac{10}{3}\pi\ in.[/tex]