Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Find the arc length of a central angle 300 degrees in a circle whose radius is 2 inches? help now ASP I NEED HELP A.10 π/ 3 in
B.1200 in
C. 22 π/ 3 in
D. 75 in.


Sagot :

[tex]\text{Arc length } = \frac{\theta}{360}2\pi r [/tex]

[tex]= (\frac{300}{360})2\pi (2)[/tex]

[tex]= 4\pi(\frac{300}{360})[/tex]

[tex]= 4\pi(\frac{5}{6})[/tex]

[tex]= \frac{20\pi}{6}[/tex]

[tex]= \frac{10\pi}{3} \text{ in}[/tex]

Answer:  A. [tex]\dfrac{10}{3}\pi\ in.[/tex]

Step-by-step explanation:

The formula to calculate the arc length with central angle x and radius r given by :-

[tex]l=\dfrac{x}{360^{\circ}}\times2\pi r[/tex]

Given: Radius of circle 'r'= 2 inches

The central angle 'x'= [tex]300^{\circ][/tex]

Now, the arc length of a central angle [tex]300^{\circ][/tex] in a circle whose radius is 2 inches is given by :-

[tex]l=\dfrac{300^{\circ]}{360^{\circ}}\times2\pi (2)\\\\\Rightarrow\ l=\dfrac{10}{3}\pi\ in.[/tex]