Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
[tex]\text{Arc length } = \frac{\theta}{360}2\pi r [/tex]
[tex]= (\frac{300}{360})2\pi (2)[/tex]
[tex]= 4\pi(\frac{300}{360})[/tex]
[tex]= 4\pi(\frac{5}{6})[/tex]
[tex]= \frac{20\pi}{6}[/tex]
[tex]= \frac{10\pi}{3} \text{ in}[/tex]
[tex]= (\frac{300}{360})2\pi (2)[/tex]
[tex]= 4\pi(\frac{300}{360})[/tex]
[tex]= 4\pi(\frac{5}{6})[/tex]
[tex]= \frac{20\pi}{6}[/tex]
[tex]= \frac{10\pi}{3} \text{ in}[/tex]
Answer: A. [tex]\dfrac{10}{3}\pi\ in.[/tex]
Step-by-step explanation:
The formula to calculate the arc length with central angle x and radius r given by :-
[tex]l=\dfrac{x}{360^{\circ}}\times2\pi r[/tex]
Given: Radius of circle 'r'= 2 inches
The central angle 'x'= [tex]300^{\circ][/tex]
Now, the arc length of a central angle [tex]300^{\circ][/tex] in a circle whose radius is 2 inches is given by :-
[tex]l=\dfrac{300^{\circ]}{360^{\circ}}\times2\pi (2)\\\\\Rightarrow\ l=\dfrac{10}{3}\pi\ in.[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.