Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
[tex]\text{Arc length } = \frac{\theta}{360}2\pi r [/tex]
[tex]= (\frac{300}{360})2\pi (2)[/tex]
[tex]= 4\pi(\frac{300}{360})[/tex]
[tex]= 4\pi(\frac{5}{6})[/tex]
[tex]= \frac{20\pi}{6}[/tex]
[tex]= \frac{10\pi}{3} \text{ in}[/tex]
[tex]= (\frac{300}{360})2\pi (2)[/tex]
[tex]= 4\pi(\frac{300}{360})[/tex]
[tex]= 4\pi(\frac{5}{6})[/tex]
[tex]= \frac{20\pi}{6}[/tex]
[tex]= \frac{10\pi}{3} \text{ in}[/tex]
Answer: A. [tex]\dfrac{10}{3}\pi\ in.[/tex]
Step-by-step explanation:
The formula to calculate the arc length with central angle x and radius r given by :-
[tex]l=\dfrac{x}{360^{\circ}}\times2\pi r[/tex]
Given: Radius of circle 'r'= 2 inches
The central angle 'x'= [tex]300^{\circ][/tex]
Now, the arc length of a central angle [tex]300^{\circ][/tex] in a circle whose radius is 2 inches is given by :-
[tex]l=\dfrac{300^{\circ]}{360^{\circ}}\times2\pi (2)\\\\\Rightarrow\ l=\dfrac{10}{3}\pi\ in.[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.