Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

If ABC ~ DEC, solve for x. The image is not drawn to scale.

A.
x = 2
B.
x = 3
C.
x = 4
D.
x = 13


If ABC DEC Solve For X The Image Is Not Drawn To Scale A X 2 B X 3 C X 4 D X 13 class=

Sagot :

[tex]If\ \Delta ABC\sim\Delta DEC\ then:\\\\\frac{19-2x}{11-x}=\frac{8+x}{6}\ where\ x\in(-8;\ 11)\ \ \ |cross\ multiply\\\\(11-x)(8+x)=6(19-2x)\\11(8)+11(x)-x(8)-x(x)=6(19)+6(-2x)\\88+11x-8x-x^2=114-12x\\-x^2+3x+88=114-12x\ \ \ |subtract\ 114\ from\ both\ sides\\-x^2+3x-26=-12x\ \ \ \ \ |add\ 12x\ to\ both\ sides\\-x^2+15x-26=0\ \ \ \ |change\ signs\\x^2-15x+26=0\\x^2-2x-13x+26=0\\x(x-2)-13(x-2)=0\\(x-2)(x-13)=0\iff x-2=0\ or\ x-13=0\\\\x=2\in(-8;\ 11)\ or\ x=13\notin(-8;\ 11)\\\\Answer:\boxed{\boxed{A.\ x=2}}[/tex]

Answer: A.    x = 2

Step-by-step explanation:

In the given picture we have [tex]\triangle{ABC}\sim\triangle{DEC}[/tex]

Since, we know that the corresponding sides in similar triangles are in proportion.

Therefore, we have

[tex]\dfrac{CD}{AC}=\dfrac{CE}{BC}\\\\\Rightarrow\dfrac{8+x}{6}=\dfrac{19-2x}{11-x}\\\\\Rightarrow\ (11-x)(8+x)=6(19-2x)\\\\\Rightarrow\ 88 + 3x -x^2=114-12x\\\\\Rightarrow x^2-15x+26=0\\\\\Rightarrow\ (x-13)(x-2)=0\\\\\Rightarrow\ x=13,2[/tex]

But x can not be 13 because BC=11-13=-2, which is not possible.

Therefore, the value of  x=2.