Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
First, notice that, by the Pythagorean Theorem,
[tex]x^2+y^2=3^2 [/tex]
meaning that:
[tex]x^2=9-y^2[/tex]
Also, since the volume of a cone with radius r and height h is [tex] \frac{1}{3} \pi r^2h[/tex] we know that the volume of the cone is:
[tex] \frac{1}{3} \pi x^2 (3+y) = \frac{1}{3} \pi (9-y^2)(3+y) = \frac{1}{3} \pi [27+9y-3y^2-y^3][/tex]
Therefore, we want to maximize the function [tex]V(y) = \frac{1}{3} \pi [27+9y-3y^2-y^3][/tex] subject to the constraint [tex]0 \leq y \leq 3[/tex].
To find the critical points, we differentiate:
[tex]V'(y)= \frac{1}{3} \pi [9-6y-3y^2] = \pi [3-2y-y^2] = \pi (3+y)(1-y). [/tex]
Therefore, [tex]V'(y) = 0[/tex] when
[tex] \pi (3+y)(1-y)=0[/tex]
meaning that [tex]y = -3 [/tex] or [tex]y=1[/tex]. Only [tex]y=1[/tex] is in the interval [tex][0,3][/tex] so that’s the only critical point we need to concern ourselves with.
Now we evaluate [tex]V[/tex] at the critical point and the endpoints:
[tex]V(0) = \frac{1}{3} \pi [27+9(0) - 3(0)^2] = 9 \pi [/tex]
[tex]V(1) = \frac{1}{3} \pi [27+9(1)-3(1)^2-1^3] = \frac{32 \pi }{3} [/tex]
[tex]V(3) = \frac{1}{3} \pi [27+9(3) - 3(3)^2-3^2] = 0[/tex]
Therefore, the volume of the largest cone that can be inscribed in a sphere of radius 3 is [tex] \frac{32 \pi }{3} [/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.