Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
First, notice that, by the Pythagorean Theorem,
[tex]x^2+y^2=3^2 [/tex]
meaning that:
[tex]x^2=9-y^2[/tex]
Also, since the volume of a cone with radius r and height h is [tex] \frac{1}{3} \pi r^2h[/tex] we know that the volume of the cone is:
[tex] \frac{1}{3} \pi x^2 (3+y) = \frac{1}{3} \pi (9-y^2)(3+y) = \frac{1}{3} \pi [27+9y-3y^2-y^3][/tex]
Therefore, we want to maximize the function [tex]V(y) = \frac{1}{3} \pi [27+9y-3y^2-y^3][/tex] subject to the constraint [tex]0 \leq y \leq 3[/tex].
To find the critical points, we differentiate:
[tex]V'(y)= \frac{1}{3} \pi [9-6y-3y^2] = \pi [3-2y-y^2] = \pi (3+y)(1-y). [/tex]
Therefore, [tex]V'(y) = 0[/tex] when
[tex] \pi (3+y)(1-y)=0[/tex]
meaning that [tex]y = -3 [/tex] or [tex]y=1[/tex]. Only [tex]y=1[/tex] is in the interval [tex][0,3][/tex] so that’s the only critical point we need to concern ourselves with.
Now we evaluate [tex]V[/tex] at the critical point and the endpoints:
[tex]V(0) = \frac{1}{3} \pi [27+9(0) - 3(0)^2] = 9 \pi [/tex]
[tex]V(1) = \frac{1}{3} \pi [27+9(1)-3(1)^2-1^3] = \frac{32 \pi }{3} [/tex]
[tex]V(3) = \frac{1}{3} \pi [27+9(3) - 3(3)^2-3^2] = 0[/tex]
Therefore, the volume of the largest cone that can be inscribed in a sphere of radius 3 is [tex] \frac{32 \pi }{3} [/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.