Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
First, notice that, by the Pythagorean Theorem,
[tex]x^2+y^2=3^2 [/tex]
meaning that:
[tex]x^2=9-y^2[/tex]
Also, since the volume of a cone with radius r and height h is [tex] \frac{1}{3} \pi r^2h[/tex] we know that the volume of the cone is:
[tex] \frac{1}{3} \pi x^2 (3+y) = \frac{1}{3} \pi (9-y^2)(3+y) = \frac{1}{3} \pi [27+9y-3y^2-y^3][/tex]
Therefore, we want to maximize the function [tex]V(y) = \frac{1}{3} \pi [27+9y-3y^2-y^3][/tex] subject to the constraint [tex]0 \leq y \leq 3[/tex].
To find the critical points, we differentiate:
[tex]V'(y)= \frac{1}{3} \pi [9-6y-3y^2] = \pi [3-2y-y^2] = \pi (3+y)(1-y). [/tex]
Therefore, [tex]V'(y) = 0[/tex] when
[tex] \pi (3+y)(1-y)=0[/tex]
meaning that [tex]y = -3 [/tex] or [tex]y=1[/tex]. Only [tex]y=1[/tex] is in the interval [tex][0,3][/tex] so that’s the only critical point we need to concern ourselves with.
Now we evaluate [tex]V[/tex] at the critical point and the endpoints:
[tex]V(0) = \frac{1}{3} \pi [27+9(0) - 3(0)^2] = 9 \pi [/tex]
[tex]V(1) = \frac{1}{3} \pi [27+9(1)-3(1)^2-1^3] = \frac{32 \pi }{3} [/tex]
[tex]V(3) = \frac{1}{3} \pi [27+9(3) - 3(3)^2-3^2] = 0[/tex]
Therefore, the volume of the largest cone that can be inscribed in a sphere of radius 3 is [tex] \frac{32 \pi }{3} [/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.