Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
This question is exponential; the basic formula is
(final amount) = (initial amount) * 2^(total hours ÷ time it takes to double)
So if F = final amount and t = time in hours,
[tex]F=500*2^ \frac{t}{2} [/tex]
and for this one,
[tex]F=500*2^ \frac{24}{2} [/tex]
[tex]F=500*2^1^2[/tex]
[tex]F = 2048000 [/tex]
There are 500 bacteria at the beginning and they double every 2 hours. So, if you want to find the number of the bacteria after 2 hours, you must multiply 500 by 2; after 4 hours - multiply 500 by 4; after 6 hours - multiply 500 by 8; etc.
You can write it like this:
[tex]x=500 \times 2^{\frac{t}{2}}[/tex]
where x is the number of the bacteria after t hours
[tex]t=24 \\ \\ x=500 \times 2^\frac{24}{2}=500 \times 2^{12}=500 \times 4096=2048000[/tex]
There will be 2,048,000 bacteria after 24 hours.
You can write it like this:
[tex]x=500 \times 2^{\frac{t}{2}}[/tex]
where x is the number of the bacteria after t hours
[tex]t=24 \\ \\ x=500 \times 2^\frac{24}{2}=500 \times 2^{12}=500 \times 4096=2048000[/tex]
There will be 2,048,000 bacteria after 24 hours.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.