Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

PLEASE HELP ASAP

The line that is the perpendicular bisector of the segment whose endpoints are R(-1, 6) and S(5, 5)

Indicate the equation of the given line in standard form.





Sagot :

First find midpoint:  [tex]\left( \frac{-1+5}{2}, \frac{6+5}{2}\right) = (2, 5.5)[/tex] 

Find slope of line that passes through R and S:    slope = [tex] \frac{6-5}{-1-5} = \frac{-1}{6}[/tex]   

Negative reciprocal of slope to get slope of perpendicular:    new slope = 6

Line will be:  [tex] y-5.5=6(x-2)[/tex] 

  [tex] y = 6x - 6.5[/tex]

Answer:

6x-y=13/2

Step-by-step explanation: