Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Simplify. Write in radical form.
(x^3y^-2/xy)^-1/5


Sagot :

Hope this helped! Much luck!
View image Canadianfox
View image Canadianfox

Answer:

The radical form of the expression [tex](\frac{x^3y^{-2}}{xy})^{\frac{-1}{5}}[/tex] is [tex]\sqrt[5]{\dfrac{y^3}{x^2}}[/tex]

Step-by-step explanation:

 Given : [tex](\frac{x^3y^{-2}}{xy})^{\frac{-1}{5}}[/tex]

We have to simplify the given expression and write in radical form.

RADICAL FORM is the simplest form of expression that do not involve any negative exponent and power is less than n, where n is the nth root of that expression.

Consider the given expression  [tex](\frac{x^3y^{-2}}{xy})^{\frac{-1}{5}}[/tex]

Cancel out the common factor x, we get,

[tex](\frac{x^2y^{-2}}{y})^{\frac{-1}{5}}[/tex]

Using laws of exponents, [tex]a^{-m}=\frac{1}{a^m}[/tex] , we have,

[tex](\frac{x^2}{y\cdot y^2})^{\frac{-1}{5}}[/tex]

Using laws of exponents, [tex]x^m \cdot x^n=x^{m+n}[/tex] , we have,

[tex](\frac{x^2}{y^3})^{\frac{-1}{5}}[/tex]

Again using laws of exponents, [tex]a^{-m}=\frac{1}{a^m}[/tex] , we have,

[tex](\frac{y^3}{x^2})^{\frac{1}{5}}[/tex]

Also, written as  [tex]\sqrt[5]{\dfrac{y^3}{x^2}}[/tex]

Thus, the radical form of the expression [tex](\frac{x^3y^{-2}}{xy})^{\frac{-1}{5}}[/tex] is [tex]\sqrt[5]{\dfrac{y^3}{x^2}}[/tex]