Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

In this diagram, radius AD = 5 mm, radius BD = 12 mm and chord

CD = 8 mm. Find the exact length of AB, in surd form.

In This Diagram Radius AD 5 Mm Radius BD 12 Mm And Chord CD 8 Mm Find The Exact Length Of AB In Surd Form class=

Sagot :

Answer:

The exact length of AB is [tex]3 + 4\sqrt{10}[/tex] milimeters.

Step-by-step explanation:

Both triangles ACD and BCD are isosceles and triangles AEC, ADE, BDE and BCE are right-angled, where E is the point where line segments AB and CD meet each other. We can determine the exact length of AB by means of two horizontal right triangles (i.e. AEC, BCE) and the Pythagorean Theorem:

[tex]AB = \sqrt{AC^{2}-CE^{2}}+\sqrt{CB^{2}-CE^{2}}[/tex]

If we know that [tex]AD = AC[/tex], [tex]BC = BD[/tex], [tex]AC = 5\,mm[/tex], [tex]BC = 12\,mm[/tex] and [tex]CE = 4\,mm[/tex], then the exact length of AB is:

[tex]AB = \sqrt{(5\,mm)^{2}-(4\,mm)^{2}}+\sqrt{(12\,mm)^{2}-(4\,mm)^{2}}[/tex]

[tex]AB = 3 + 4\sqrt{10}\,[mm][/tex]