Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
[tex]P(x =2) = 0.3020[/tex]
Step-by-step explanation:
Given
[tex]p =20\% = 0.20[/tex]
[tex]n = 10[/tex]
Required
[tex]P(x = 2)[/tex]
This question is an illustration of binomial distribution where:
[tex]P(X = x) = ^nC_x * p^x * (1 - p)^{n-x[/tex]
So, we have:
[tex]P(x =2) = ^{10}C_2 * 0.20^2 * (1 - 0.20)^{10-2}[/tex]
[tex]P(x =2) = ^{10}C_2 * 0.20^2 * 0.80^8[/tex]
This gives
[tex]P(x =2) = \frac{10!}{(10 - 2)!2!} * 0.20^2 * 0.80^8[/tex]
[tex]P(x =2) = \frac{10!}{8!2!} * 0.20^2 * 0.80^8[/tex]
Expand
[tex]P(x =2) = \frac{10*9*8!}{8!2*1} * 0.20^2 * 0.80^8[/tex]
[tex]P(x =2) = \frac{10*9}{2} * 0.20^2 * 0.80^8[/tex]
[tex]P(x =2) = 45 * 0.20^2 * 0.80^8[/tex]
[tex]P(x =2) = 0.3020[/tex]
The probability that 2 out of the next ten customers will order the chef special is 0.3020. and this can be determined by using the binomial distribution.
Given :
- 20% of the patron's order the chef's special.
- Sample size, n = 10
To determine the probability formula of the binomial distribution is used, that is:
[tex]\rm P(x = r) = \; ^nC_r \times p^r \times (1 - p)^{n-r}[/tex]
Now, at n = 10 and r = 2, the probability is given by:
[tex]\rm P(x = 2) = \; ^{10}C_2 \times (0.2)^2 \times (1 - 0.2)^{10-2}[/tex]
[tex]\rm P(x = 2) = \; ^{10}C_2 \times (0.2)^2 \times (0.8)^{10-2}[/tex]
[tex]\rm P(x = 2) = \; \dfrac{10!}{(10-2)!\times 2!} \times (0.2)^2 \times (0.8)^{8}[/tex]
[tex]\rm P(x = 2) = \; 45 \times (0.2)^2 \times (0.8)^{8}[/tex]
P(x = 2) = 0.3020
The probability that 2 out of the next ten customers will order the chef special is 0.3020.
For more information, refer to the link given below:
https://brainly.com/question/1957976
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.