Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
The 98% confidence interval for the mean of the population is (59, 68.2).
Step-by-step explanation:
Before building the confidence interval, we need to find the sample mean and the sample standard deviation.
Sample mean:
[tex]\overline{x} = \frac{55+64+58+61+69+64+59+69+72+65}{10} = 63.6[/tex]
Sample standard deviation:
[tex]s = \sqrt{\frac{(55-63.6)^2+(64-63.6)^2+(58-63.6)^2+(61-63.6)^2+(69-63.6)^2+(64-63.6)^2+(59-63.6)^2+(69-63.6)^2+(72-63.6)^2+(65-63.6)^2}{10}} = 5.142[/tex]
Confidence interval:
We have the standard deviation for the sample, and thus, we use the t-distribution.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 10 - 1 = 9
98% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 9 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.98}{2} = 0.99[/tex]. So we have T = 2.821
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 2.821\frac{5.142}{\sqrt{10}} = 4.6[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 63.6 - 4.6 = 59
The upper end of the interval is the sample mean added to M. So it is 63.6 + 4.6 = 68.2.
The 98% confidence interval for the mean of the population is (59, 68.2).
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.