Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
[tex]I = m\cdot (\vec{v}_{2} - \vec{v_{1}})[/tex] (1)
Where:
[tex]I[/tex] - Impulse, in kilogram-meters per second.
[tex]m[/tex] - Mass, in kilograms.
[tex]\vec{v_{1}}[/tex] - Initial velocity of the hockey park, in meters per second.
[tex]\vec{v_{2}}[/tex] - Final velocity of the hockey park, in meters per second.
If we know that [tex]m = 0.2\,kg[/tex], [tex]\vec{v}_{1} = -10\,\hat{i}\,\left[\frac{m}{s}\right][/tex] and [tex]\vec {v_{2}} = 25\,\hat{i}\,\left[\frac{m}{s} \right][/tex], then the impulse applied by the stick to the park is approximately:
[tex]I = (0.2\,kg)\cdot \left(35\,\hat{i}\right)\,\left[\frac{m}{s} \right][/tex]
[tex]I = 7\,\hat{i}\,\left[\frac{kg\cdot m}{s} \right][/tex]
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.