Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
The margin of error for the 95% confidence interval used to estimate the population proportion is of 0.0209.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is of:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In a clinical test with 2161 subjects, 1214 showed improvement from the treatment.
This means that [tex]n = 2161, \pi = \frac{1214}{2161} = 0.5618[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
Margin of error:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]M = 1.96\sqrt{\frac{0.5618*0.4382}{2161}}[/tex]
[tex]M = 0.0209[/tex]
The margin of error for the 95% confidence interval used to estimate the population proportion is of 0.0209.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.