At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
[tex]\displaystyle \frac{dy}{dx} = \frac{-cos(x) - ysec(xy)tan(xy)}{-sin(y) + xsec(xy)tan(xy)}[/tex]
General Formulas and Concepts:
Pre-Algebra
Distributive Property
Algebra I
- Factoring
Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Trig Differentiation
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Implicit Differentiation
Step-by-step explanation:
Step 1: Define
Identify
sin(x) + cos(y) + sec(xy) = 251
Step 2: Differentiate
- [Implicit Differentiation] Trig Differentiation [Chain Rule]: [tex]\displaystyle cos(x) - sin(y)\frac{dy}{dx} + sec(xy)tan(xy) \cdot (y + x\frac{dy}{dx}) = 0[/tex]
- [Subtraction Property of Equality] Isolate [tex]\displaystyle \frac{dy}{dx}[/tex] terms: [tex]\displaystyle -sin(y)\frac{dy}{dx} + sec(xy)tan(xy) \cdot (y + x\frac{dy}{dx}) = -cos(x)[/tex]
- [Distributive Property] Distribute sec(xy)tan(xy): [tex]\displaystyle -sin(y)\frac{dy}{dx} + ysec(xy)tan(xy) + xsec(xy)tan(xy)\frac{dy}{dx} = -cos(x)[/tex]
- [Subtraction Property of Equality] Isolate [tex]\displaystyle \frac{dy}{dx}[/tex] terms: [tex]\displaystyle -sin(y)\frac{dy}{dx} + xsec(xy)tan(xy)\frac{dy}{dx} = -cos(x) - ysec(xy)tan(xy)[/tex]
- Factor out [tex]\displaystyle \frac{dy}{dx}[/tex]: [tex]\displaystyle \frac{dy}{dx}[-sin(y) + xsec(xy)tan(xy)] = -cos(x) - ysec(xy)tan(xy)[/tex]
- [Division Property of Equality] Isolate [tex]\displaystyle \frac{dy}{dx}[/tex]: [tex]\displaystyle \frac{dy}{dx} = \frac{-cos(x) - ysec(xy)tan(xy)}{-sin(y) + xsec(xy)tan(xy)}[/tex]
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Implicit Differentiation
Book: College Calculus 10e
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.