Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
Step-by-step explanation:
New Note 2
Given coordinates:
B(1,2)
E(-5,3)
A(-6,3)
Part A, isosceles triangle
Need to find lengths of sides
BE^2 = ((-5-1)^2+(3-2)^2) = 36+1 = 37
BA^2 = ((-6-1)^2+(-3-2)^2) = 49+25 = 74
EA^2 = ((-6-(-5))^2+(-3-3)^2) = 1+ 36 = 37
Since BE^2 = EA^2, BE=EA, or triangle BEA is isosceles, with vertex at E.
Part B, find point R so that BEAR is a sqare
Need to show that the vertex angle, BEA is a right angle.
BA is diagonal and E is 90° if
BE^2 + EA^2 = BA^2
or
37+37 = 74
Hence angle BEA is right anglesd, and the two legs are eaual with length sqrt(37)
To find point R, we find the translation from point E to point B, i.e. from the vertex to end of one of the legs.
EB = B - E = (1-(-5))-(2-3) = <6,-1>
To find point R, apply this translation to the end of the other leg, i.e. point A,
R=A(-6,-3) + <6,-1>=R(0,-4)
Check:
RE (diagonal)^2 = ((0-(-5))^2+(-4-3)^2) = 25+49 = 74 checks
RB^2 = ((0-1))^2+(-4-2)^2) = 1+36 = 37 checks
RA^2 = ((0--(-6))^2+(-4-(-3))^2) = 36+1 = 37 checks
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.