Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
x = 28 m
y = 14 m
A(max) = 392 m²
Step-by-step explanation:
Rectangular garden A (r ) = x * y
Let´s call x the side of the rectangle to be constructed with a rock wall, then only one x side of the rectangle will be fencing with wire.
the perimeter of the rectangle is p = 2*x + 2*y ( but in this particular case only one side x will be fencing with wire
56 = x + 2*y 56 - 2*y = x
A(r) = ( 56 - 2*y ) * y
A(y ) = 56*y - 2*y²
Tacking derivatives on both sides of the equation we get:
A´(y ) = 56 - 4 * y A´(y) = 0 56 - 4*y = 0 4*y = 56
y = 14 m
and x = 56 - 2*y = 56 - 28 = 28 m
Then dimensions of the garden:
x = 28 m
y = 14 m
A(max) = 392 m²
How do we know that the area we found is a local maximum??
We find the second derivative
A´´(y) = - 4 A´´(y) < 0 then the function A(y) has a local maximum at y = 14 m
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.