Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
x = 28 m
y = 14 m
A(max) = 392 m²
Step-by-step explanation:
Rectangular garden A (r ) = x * y
Let´s call x the side of the rectangle to be constructed with a rock wall, then only one x side of the rectangle will be fencing with wire.
the perimeter of the rectangle is p = 2*x + 2*y ( but in this particular case only one side x will be fencing with wire
56 = x + 2*y 56 - 2*y = x
A(r) = ( 56 - 2*y ) * y
A(y ) = 56*y - 2*y²
Tacking derivatives on both sides of the equation we get:
A´(y ) = 56 - 4 * y A´(y) = 0 56 - 4*y = 0 4*y = 56
y = 14 m
and x = 56 - 2*y = 56 - 28 = 28 m
Then dimensions of the garden:
x = 28 m
y = 14 m
A(max) = 392 m²
How do we know that the area we found is a local maximum??
We find the second derivative
A´´(y) = - 4 A´´(y) < 0 then the function A(y) has a local maximum at y = 14 m
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.