Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
Explanation:
The missing diagram attached to the question is shown in the attached file below:
The very first thing we need to do in other to solve this question is to determine the mass of both the tractor and the mass of the gravel
For tractor, the mass is:
[tex]m_1 = \dfrac{2400 \ lb }{32.2 \ ft/s^2}[/tex]
[tex]m_1 = 74.53 \ lb.s^2/ft[/tex]
For gravel, the mass is:
[tex]m_2 = \dfrac{900 \ lb}{32.2 \ft/s^2}[/tex]
[tex]m_2 = 27.95 \ lb.s^2/ft[/tex]
From the diagram, let's consider the force along the horizontal components and vertical components;
So,
[tex]\sum F_x = ma_x \\ \\ 2F = (m_1+m_2) a \\ \\ F = \dfrac{1}{2}(74.53 4 + 27.950)lb.s^2/ft(2 \ ft/s^2) \\ \\ F = 102.484 \ lb[/tex]
[tex]\sum F_y = 0 \\ \\ 2N_A+2N_B - 2400 -900 = 0 \\ \\ N_A +N_B = 1650 \ lb[/tex]
Consider the algebraic sum of moments in the plane of A, with counter-clockwise moments being positive.
[tex]\sum M_A = I_o \alpha + \sum ma (d) \\ \\ = -2400 (20) + 2N_B (60) -900(110) = 0 - (74.534)(2)(20) - (27.950)(2)(40)[/tex]
[tex]=-48000 + 2N_B (60) -99000 = -2981.36-2236 \\ \\ = + 2N_B (60) = -2981.36-2236+48000+99000 \\ \\ = + 2N_B (60) = 141782.64 \\ \\ N_B = \dfrac{141782.64}{120} \\ \\ N_B = 1181.522 \ lb[/tex]
Replacing the value of 1181.522 lb for [tex]N_B[/tex] in equation (1)
[tex]N_A[/tex] + 1181.522 lb = 1650 lb
[tex]N_A[/tex] = (1650 - 1181.522)lb
[tex]N_A[/tex] = 468.478 lb
The net reaction on each of the rear wheels now is:)
[tex]F_R = \sqrt{N_A^2 +F^2}[/tex]
[tex]F_R = \sqrt{(468.478)^2 + (102.484)^2}[/tex]
[tex]\mathbf{F_R =479.6 \ lb}[/tex]
Now, we can determine the angle at the end of the rear wheels at which the resultant reaction force is being made in line with the horizontal
[tex]\theta = tan ^{-1}( \dfrac{468.478 }{102.484})[/tex]
[tex]\theta = 77.7^0[/tex]
Finally, the net reaction on each of the front wheels is:
[tex]F_B = N_B[/tex]
[tex]F_B =[/tex] 1182 lb
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.