At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
The approximate standard deviation of the sampling distribution of the mean for all samples of size n is [tex]s = \frac{\sigma}{\sqrt{n}} = \frac{21}{\sqrt{n}}[/tex]
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
The mean life expectancy of a certain type of light bulb is 945 hours with a standard deviation of 21 hours
This means that [tex]\mu = 945, \sigma = 21[/tex].
What is the approximate standard deviation of the sampling distribution of the mean for all samples of size n?
[tex]s = \frac{\sigma}{\sqrt{n}} = \frac{21}{\sqrt{n}}[/tex]
The approximate standard deviation of the sampling distribution of the mean for all samples of size n is [tex]s = \frac{\sigma}{\sqrt{n}} = \frac{21}{\sqrt{n}}[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.