Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
The approximate standard deviation of the sampling distribution of the mean for all samples of size n is [tex]s = \frac{\sigma}{\sqrt{n}} = \frac{21}{\sqrt{n}}[/tex]
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
The mean life expectancy of a certain type of light bulb is 945 hours with a standard deviation of 21 hours
This means that [tex]\mu = 945, \sigma = 21[/tex].
What is the approximate standard deviation of the sampling distribution of the mean for all samples of size n?
[tex]s = \frac{\sigma}{\sqrt{n}} = \frac{21}{\sqrt{n}}[/tex]
The approximate standard deviation of the sampling distribution of the mean for all samples of size n is [tex]s = \frac{\sigma}{\sqrt{n}} = \frac{21}{\sqrt{n}}[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.