At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

A long, straight wire lies along the zz-axis and carries a 3.90-AA current in the z z-direction. Find the magnetic field (magnitude and direction) produced at the following points by a 0.600 mmmm segment of the wire centered at the origin.

Sagot :

The question is incomplete. The complete question is :

A long, straight wire lies along the z-axis and carries a 3.90-A current in the + z-direction. Find the magnetic field (magnitude and direction) produced at the following points by a 0.600 mm segment of the wire centered at the origin.

A) x=2.00m,y=0, z=0

Bx,By,Bz = ? T

Enter your answers numerically separated by commas.

B) x=0, y=2.00m, z=0

C) x=2.00m, y=2.00m, z=0

D) x=0, y=0, z=2.00m

Solution :

The expression of the magnetic field using the Biot Savart's law is given by :

[tex]$d \vec B=\frac{\mu_0 I\vec{dl} \times \vec r}{4 \pi r^3}$[/tex]

a). The position vector is on the positive x direction.

[tex]$\vec r = (2 \ m) \ \hat i$[/tex]

[tex]$|r| = 2 \ m$[/tex]

The magnetic field is  

[tex]$d \vec B=\frac{\mu_0 I\vec{dl} \times \vec r}{4 \pi r^3}$[/tex]

[tex]$d \vec B=\frac{4 \pi \times 10^{-7} \times 3.9 \times 0.6 \times 10^{-3} \times\hat k \times (2 ) \hat i }{4 \pi \times (2)^3}$[/tex]

[tex]$d \vec B=(5.85 \times 10^{-11} \ T)\hat j$[/tex]

The magnetic field is   [tex]$(0, \ 5.85 \times 10^{-11} \ T, \ 0).$[/tex]

b). The position vector is in the positive y-direction.

[tex]$\vec r = (2 \ m) \ \hat j$[/tex]

[tex]$|r| = 2 \ m$[/tex]

The magnetic field is

[tex]$d \vec B=\frac{\mu_0 I\vec{dl} \times \vec r}{4 \pi r^3}$[/tex]

[tex]$d \vec B=\frac{4 \pi \times 10^{-7} \times 3.9 \times 0.6 \times 10^{-3} \times\hat k \times (2 ) \hat j }{4 \pi \times (2)^3}$[/tex]

[tex]$d \vec B=(5.85 \times 10^{-11} \ T)(-\hat{i})$[/tex]

The magnetic field is   [tex]$(- 5.85 \times 10^{-11} \ T, \ 0, \ 0).$[/tex]

c). The position vector is :

[tex]$\vec r = (2)\hat i + (2)\hat j$[/tex]

[tex]$|\vec r| = \sqrt{(2)^2+(2)^2}$[/tex]

   [tex]$=2.828 \ m$[/tex]

The magnetic field is

[tex]$d \vec B=\frac{\mu_0 I\vec{dl} \times \vec r}{4 \pi r^3}$[/tex]

[tex]$d \vec B=\frac{4 \pi \times 10^{-7} \times 3.9 \times 0.6 \times 10^{-3} \times\hat k \times ((2)\hat i + (2) \hat j) }{4 \pi \times (2.828)^3}$[/tex]

   [tex]$=(4.13\times 10^{-11})\hat j+(4.13\times 10^{-11})(-\hat i)$[/tex]

The magnitude of the magnetic field is :

[tex]$|d\vec B|=\sqrt{(4.13\times 10^{-11})^2+(4.13\times 10^{-11})^2}$[/tex]

       [tex]$=5.84 \times 10^{-11} \ T$[/tex]

Therefore, the magnetic field is [tex]$(-4.13 \times 10^{-11}\ T, \ 4.13 \times 10^{-11}\ T, \ 0 )$[/tex]

d).  The position vector is in the positive y-direction.

[tex]$\vec r = (2 \ m) \ \hat k$[/tex]

[tex]$|r| = 2 \ m$[/tex]

The magnetic field is

[tex]$d \vec B=\frac{\mu_0 I\vec{dl} \times \vec r}{4 \pi r^3}$[/tex]

[tex]$d \vec B=\frac{4 \pi \times 10^{-7} \times 3.9 \times 0.6 \times 10^{-3} \times\hat k \times (2 ) \hat k }{4 \pi \times (2)^3}$[/tex]

   = 0 T

The magnetic field is (0, 0, 0)

We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.