Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
a) [tex]Tb=1845.05K[/tex]
b) [tex]Q=1000.25KJ[/tex]
c) [tex]\mu=0.59[/tex]
Explanation:
From the question we are told that:
Temperature x [tex]Tx=450c=>723K[/tex]
Pressure x [tex]Px=2.5MPa[/tex]
Temperature y [tex]Ty=600c=>873K[/tex]
Pressure y [tex]Py=0.45MPa[/tex]
Let
Air atmospheric temperature be [tex]25c[/tex]
Therefore
Temperature [tex]Ta=25+273=298k[/tex]
Generally the equation for Otto cycle is mathematically given by
[tex]\frac{Tb}{Tx}=\frac{Ty}{Ta}[/tex]
[tex]Tb=\frac{873*723}{298}[/tex]
[tex]Tb=2118.05[/tex]
Therefore the peak cycle temperature (°C)
[tex]Tb=2118.05k[/tex]
[tex]Tb=2118.05-273[/tex]
[tex]Tb=1845.05K[/tex]
Generally the equation for Heat addition is mathematically given by
[tex]Q=Cv(Tb-Tx)[/tex]
[tex]Q=Cv(2118.05-723)[/tex]
[tex]Q=1000.25KJ[/tex]
Generally the equation for Thermal efficiency is mathematically given by
[tex]\mu=1-\frac{Ta}{Tx}[/tex]
[tex]\mu=1-\frac{298}{723}[/tex]
[tex]\mu=0.59[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.