Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
0.0344 = 3.44% probability that a newborn pup has a weight above 24.0 lbs.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 22.0 lbs and standard deviation of 1.1 lbs.
This means that [tex]\mu = 22, \sigma = 1.1[/tex]
Find the probability that a newborn pup has a weight above 24.0 lbs.
This is 1 subtracted by the p-value of Z when X = 24. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{24 - 22}{1.1}[/tex]
[tex]Z = 1.82[/tex]
[tex]Z = 1.82[/tex] has a p-value of 0.9656.
1 - 0.9656 = 0.0344
0.0344 = 3.44% probability that a newborn pup has a weight above 24.0 lbs.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.