Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Find the equation of the parabola which has the given vertex V, which passes through the given point P, and which has the specified axis of symmetry. V(4,−2),P(2,14), vertical axis of symmetry.

Sagot :

Answer:

[tex]y = 4(x - 4)^2 - 2[/tex]

or

[tex]y=4x^2 -32x + 62[/tex]

Step-by-step explanation:

Given

[tex]V = (4,-2)[/tex] --- vertex

[tex]P = (2,14)[/tex] --- point

Required

The equation of the parabola

The equation of the parabola is of the form

[tex]y = a(x - h)^2 + k[/tex]

Where

[tex]V (4,-2) = (h,k)[/tex] ---- the vertex

So, we have:

[tex]y = a(x - h)^2 + k[/tex]

[tex]y = a(x - 4)^2 - 2[/tex]

In [tex]P = (2,14)[/tex], we have:

[tex](x,y) = (2,14)[/tex]

Substitute [tex](x,y) = (2,14)[/tex] in [tex]y = a(x - 4)^2 - 2[/tex]

[tex]14 = a(2 - 4)^2 - 2[/tex]

[tex]14 = a(- 2)^2 - 2[/tex]

[tex]14 = a*4 - 2[/tex]

[tex]14 = 4a - 2[/tex]

Collect like terms

[tex]4a = 14 +2[/tex]

[tex]4a = 16[/tex]

Divide both sides by 4

[tex]a= 4[/tex]

So:

[tex]y = a(x - 4)^2 - 2[/tex] becomes

[tex]y = 4(x - 4)^2 - 2[/tex]

Open bracket to express the equation in standard form

[tex]y=4(x^2 -8x + 16) - 2[/tex]

[tex]y=4x^2 -32x + 64 - 2[/tex]

[tex]y=4x^2 -32x + 62[/tex]

Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.