At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
[tex]y = 4(x - 4)^2 - 2[/tex]
or
[tex]y=4x^2 -32x + 62[/tex]
Step-by-step explanation:
Given
[tex]V = (4,-2)[/tex] --- vertex
[tex]P = (2,14)[/tex] --- point
Required
The equation of the parabola
The equation of the parabola is of the form
[tex]y = a(x - h)^2 + k[/tex]
Where
[tex]V (4,-2) = (h,k)[/tex] ---- the vertex
So, we have:
[tex]y = a(x - h)^2 + k[/tex]
[tex]y = a(x - 4)^2 - 2[/tex]
In [tex]P = (2,14)[/tex], we have:
[tex](x,y) = (2,14)[/tex]
Substitute [tex](x,y) = (2,14)[/tex] in [tex]y = a(x - 4)^2 - 2[/tex]
[tex]14 = a(2 - 4)^2 - 2[/tex]
[tex]14 = a(- 2)^2 - 2[/tex]
[tex]14 = a*4 - 2[/tex]
[tex]14 = 4a - 2[/tex]
Collect like terms
[tex]4a = 14 +2[/tex]
[tex]4a = 16[/tex]
Divide both sides by 4
[tex]a= 4[/tex]
So:
[tex]y = a(x - 4)^2 - 2[/tex] becomes
[tex]y = 4(x - 4)^2 - 2[/tex]
Open bracket to express the equation in standard form
[tex]y=4(x^2 -8x + 16) - 2[/tex]
[tex]y=4x^2 -32x + 64 - 2[/tex]
[tex]y=4x^2 -32x + 62[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.