Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

An automobile insurance company divides customers into three risk categories: Good (G), Medium (M), and Poor (P). Assume the following distribution of customers: 70% are Good risks, 20% are Medium risks, and 10% are Poor risks. Assume that the probabilities of a customer filing an accident claim (C) in the course of a year are: 0.5% for Good, 1% for Medium, and 2.5% for Poor. A customer is chosen at random.
a) What is the probability that the customer is a good risk and has filed a claim?b) What is the probability that the customer has filed a claim?c) Given that the customer has filed a claim, what is the probability that the customer is a good risk?

Sagot :

Answer:

a) 0.035 = 3.5% probability that a customer is a good risk and has filed a claim.

b) 0.0395 = 3.95% probability that the customer has filed a claim.

c) 0.8861 = 88.61% probability that the customer is a good risk

Step-by-step explanation:

Conditional Probability

We use the conditional probability formula to solve this question. It is

[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]

In which

P(B|A) is the probability of event B happening, given that A happened.

[tex]P(A \cap B)[/tex] is the probability of both A and B happening.

P(A) is the probability of A happening.

a) What is the probability that the customer is a good risk and has filed a claim?

70% are good risks.

Of those, 0.5% file a claim. So

[tex]0.7*0.05 = 0.035[/tex]

0.035 = 3.5% probability that a customer is a good risk and has filed a claim.

b) What is the probability that the customer has filed a claim?

0.5% of 70%(good risks)

1% of 20%(medium risks)

2.5% of 10%(poor risks). So

[tex]0.05*0.7 + 0.01*0.2 + 0.025*0.1 = 0.0395[/tex]

0.0395 = 3.95% probability that the customer has filed a claim.

c) Given that the customer has filed a claim, what is the probability that the customer is a good risk?

0.0395 = 3.95% probability that the customer has filed a claim means that [tex]P(A) = 0.0395[/tex]

0.035 = 3.5% probability that a customer is a good risk and has filed a claim means that [tex]P(A \cap B) = 0.035[/tex]

Thus

[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.035}{0.0395} = 0.8861[/tex]

0.8861 = 88.61% probability that the customer is a good risk

Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.