Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
[tex]\frac{T}{T_o} = ( 1 + \frac{1}{n} )^2[/tex]
Explanation:
This is a string resonance exercise, the wavelengths in a string held at the ends is
λ = 2L₀ / n
where n is an integer
the speed of the wave is
v = λ f
f = v /λ
the speed of the wave is given by the characteristics of the medium (string)
v = [tex]\sqrt{\frac{T}{\mu } }[/tex]
we substitute
f = [tex]\frac{n}{2L_o} \ \sqrt{\frac{T}{\mu } }[/tex]
to obtain the following harmonic we change n → n + 1
f’ = [tex]\frac{n+1}{2L_o} \ \sqrt{\frac{T_o}{\mu } }[/tex]
In this case, it tells us to change the tension to obtain the same frequency.
f ’= \frac{n}{2L_o} \ \sqrt{\frac{T}{\mu } }
how the two frequencies are equal
[tex]\frac{n+1}{2L_o} \sqrt{\frac{T_o}{ \mu } } = \frac{n}{2L_o} \sqrt{\frac{T}{\mu } }[/tex]
(n + 1) [tex]\sqrt{T_o}[/tex] = n [tex]\sqrt{T}[/tex]
[tex]\frac{T}{T_o} = ( \frac{n+1}{n} )^2[/tex]
[tex]\frac{T}{T_o} = ( 1 + \frac{1}{n} )^2[/tex]
this is the relationship of the voltages to obtain the following harmonic,
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.