Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Solution :
The probability of winning when you choose n is = [tex]$^nC_2\left(\frac{1}{2}\right)^n$[/tex]
[tex]$n\left(\frac{n-1}{2}\right)\times \left(\frac{1}{2}\right)^n = n(n-1)\left(\frac{1}{2}\right)^{n+1}$[/tex]
Apply log on both the sides,
[tex]$f(n) = \log\left((n)(n-1)\left(\frac{1}{2}\right)^{n-1}\right) = \log n +\log (n-1)+(n+1) \ \log\left(\frac{1}{2}\right)$[/tex]
Differentiation, f(x) is [tex]$f'=\frac{1}{x}+\frac{1}{(x-1)}+\log\left(\frac{1}{2}\right)$[/tex]
Let us find x for which f' is positive and x for which f' is negative.
[tex]$\frac{1}{x}+\frac{1}{(x-1)} > 0.693$[/tex] , since [tex]$\log(1/2) = 0.693147$[/tex]
For x ≤ 3, f' > 0 for [tex]$\frac{1}{x}+\frac{1}{x-1}+\log\left(\frac{1}{2}\right)>0$[/tex]
[tex]$\frac{1}{x}+\frac{1}{x-1}-0.6931470$[/tex]
That means f(x) is increasing function for n ≤ 3
[tex]$\frac{1}{x}+\frac{1}{x-1}< 0.693147 $[/tex] for x > 4
f' < 0 for n ≥ 4, that means f(n) is decreasing function for n ≥ 4.
Probability of winning when you chose n = 3 is [tex]$3(3-1)\left(\frac{1}{2}\right)^{3+1}=0.375$[/tex]
Probability of winning when you chose n = 4 is [tex]$4(4-1)\left(\frac{1}{2}\right)^{4+1}=0.375$[/tex]
Therefore, we should chose either 3 or 4 to maximize chances of winning.
The probability of winning with an optimal choice is n = 0.375
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.