Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Consider the equation:
6x+55=x^2
1) Rewrite the equation by completing the square.
Your equation should look like (x+c)^2=d(x+c)
2
=dleft parenthesis, x, plus, c, right parenthesis, squared, equals, d or (x-c)^2=d(x−c)
2
=dleft parenthesis, x, minus, c, right parenthesis, squared, equals, d.
2) What are the solutions to the equation?

Sagot :

Step-by-step explanation:

1.

Subtract the coefficient from both sides, keep 55 on the same side.

[tex] {x}^{2} - 6x = 55[/tex]

Complete the square by dividing the coefficient by two and squaring it.

[tex] {x}^{2} - 6x + 9 = 55 + 9[/tex]

Use binomial to factor the left side.

[tex](x - 3) {}^{2} = 64[/tex]

2. Solve for x.

[tex](x - 3) = 8[/tex]

[tex]x = 11[/tex]

Remeber the square root of 64 is also -8 so

[tex]x - 3 = - 8[/tex]

[tex]x = - 5[/tex]

So the solutions are -5 and 11

Answer:

Answers

1) We can rewrite the equation as 64=(x−3)^2

2) The solutions to the equation are x=3±8

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.