Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
The 99% confidence interval for the population mean reduction in anxiety was (1.2, 8.6).
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 27 - 1 = 26
99% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 26 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.99}{2} = 0.995[/tex]. So we have T = 2.7787.
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 2.7787\frac{6.9}{\sqrt{27}} = 3.7[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 4.9 - 3.7 = 1.2.
The upper end of the interval is the sample mean added to M. So it is 4.9 + 3.7 = 8.6.
The 99% confidence interval for the population mean reduction in anxiety was (1.2, 8.6).
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.