Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
[tex]1.5\; \rm s[/tex].
Step-by-step explanation:
The person in this question is in the air whenever the height is greater than [tex]0[/tex].
The graph of [tex]y = -16\, t^{2} + 24\, t[/tex] is a parabola opening downwards. Rearrange and find values of [tex]t[/tex] that would set this expression to [tex]0[/tex].
[tex]\begin{aligned}y &= -16\, t^2 + 24\, t \\ &= t\, (-16\, t + 24) = -8\, t\, (2\, t - 3)\end{aligned}[/tex].
The first factor, [tex]t[/tex], suggests that [tex]t = 0[/tex] would set this expression to [tex]0[/tex]- quite expected, since the person is on the ground right before jumping.
The second factor, [tex](2\, t - 3)[/tex], suggests that [tex]2\, t = 3[/tex] (in other words, [tex]t = 3/2 = 1.5[/tex]) would also set this expression to [tex]0[/tex]. Hence, this person would be once again on the ground [tex]1.5[/tex] seconds after jumping.
Hence, this person is in the air between [tex]t = 0[/tex] and [tex]t= 1.5[/tex] for a total of [tex]1.5\; \rm s[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.