Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
a) P = 70054.3 W, b) P = 18820 W, c) P = 14116.7 W
Explanation:
Power is defined as work per unit of time
P = W / t = F x / t
P = F v
a) in this case the velocity is constant, let's use the equilibrium relation to find the force.
Let's set a reference system with the x axis parallel to the plane
F - Wₓ = 0
F = Wₓ
with trigonometry let's decompose the weight
sin θ = Wₓ / W
Wₓ = W sin θ
F = W sin 15
F = 2800 sin 15
F = 724.7 lb
we look for the speed, as it rises with constant speed we can use the relations of uniform motion
v = x / t
v = 1160/12
v = 96.67 ft / s
we calculate the power
P = 724.7 96.67
P = 70054.3 W
b) In this case, the speed of the vehicle changes during the ascent, so we use the relationship between work and the change in kinetic energy
W = ΔK
W = ½ m v_f² - ½ m v₀²
let's reduce to the SI system
v₀ = 10 mph (5280 ft / 1 mile) (1h / 3600 s = 14.67 ft / s
v_f = 50 mph (5280 ft / 1 mile) (1 h / 3600s) = 73.33 ft.s
mass : m = w / g
W = ½ 2800/32 (73.33² - 14.67²)
W = 225841 J
we calculate the average power
P = W / t
P = 225841/12
P = 18820 W
c) we repeat the previous procedure
v₀ = 45 mph = 66 ft / s
v_f = 15 mph = 22 ft / s
W = ½ 2800/32 (22² - 66²)
W = -169400 J
P = W / t
P = 169400/12
P = 14116.7 W
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.