Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Calculate the number of cations and anions in each of the following compounds. Enter your answers in scientific notation. (a) 6.42 g of KBr:

Sagot :

Answer: The number of cations are [tex]3.24 \times 10^{22}[/tex] and number of anions are  [tex]3.24 \times 10^{22}[/tex] in 6.42 g of KBr.

Explanation:

The molar mass of KBr is (39.10 + 79.90) g/mol = 119.00 g/mol

Now, the dissociation equation for KBr is as follows.

[tex]KBr \rightarrow K^{+} + Br^{-}[/tex]

This means that 1 mole of KBr is forming 1 mole of [tex]K^{+}[/tex] (cation) and 1 mole of [tex]Br^{-}[/tex] (anion).

According to mole concept, 1 mole of every substance contains [tex]6.022 \times 10^{23}[/tex] atoms. Hence, number of cations present in 6.42 g KBr is calculated as follows.

[tex]No. of cations = Moles \times 6.022 \times 10^{23}\\= \frac{mass}{molar mass} \times 6.022 \times 10^{23}\\= \frac{6.42 g}{119.00 g/mol} \times 6.022 \times 10^{23}\\= 3.24 \times 10^{22}[/tex]

As according to the equation, there are equal number of moles of both cation and anions.

This means that the number of anions are also [tex]3.24 \times 10^{22}[/tex].

Thus, we can conclude that the number of cations are [tex]3.24 \times 10^{22}[/tex] and number of anions are  [tex]3.24 \times 10^{22}[/tex] in 6.42 g of KBr.

The number of cations and anions present in potassium bromide is 3.24 × 10²².

How we calculate atoms from moles?

In one mole of any substance 6.022 × 10²³ atoms of that substance is present and this is known as Avogadro's number.

KBr is a strong electrolyte means it fully dissociates into their constitute ions. So, the number of moles of produced ions is equal to the moles of KBr and dissociation is represented as:

KBr → K⁺ + Br⁻

From this it is clear that 1 mole of cation and 1 mole of anion is produced from 1 mole of KBr. Moles of KBr will be calculated as:

n = W/M, where

W = given mass = 6.42g

M = molar mass = 119

n = 6.42 / 119 = 0.053 moles

No. of cations and anions present in 0.053 moles = 0.053 × 6.022 × 10²³ = 3.24 × 10²².

Hence, 3.24 × 10²² is the no. of cations and anions.

To know more about Avogadro's number,  visit the below link:
https://brainly.com/question/10614569