Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
The binomial in expanded form is [tex](0.3 + q)^{5} = \frac{243}{100000} + \frac{81}{2000}\cdot q + \frac{27}{100}\cdot q^{2} + \frac{9}{10} \cdot q^{3} + \frac{3}{2}\cdot q^{4} + q^{5}[/tex].
Step-by-step explanation:
The Binomial Theorem states that a binomial of the form [tex](a + b)^{n}[/tex] can be expanded by using the following identity:
[tex](a + b)^{n} = \Sigma \limits^{n}_{k = 0}\,\frac{n!}{k!\cdot (n-k)!}\cdot a^{n-k}\cdot b^{k}[/tex] (1)
If we know that [tex]a = p = 0.3[/tex] and [tex]n = 5[/tex], then the expanded form of the binomial is:
[tex](p+q)^{n} = \frac{243}{100000} + 5\cdot \left(\frac{81}{10000} \right)\cdot q + 10\cdot \left(\frac{27}{1000})\cdot q^{2} + 10\cdot \left(\frac{9}{100} \right)\cdot q^{3} + 5\cdot \left(\frac{3}{10} \right)\cdot q^{4} + q^{5}[/tex]
[tex](0.3 + q)^{5} = \frac{243}{100000} + \frac{81}{2000}\cdot q + \frac{27}{100}\cdot q^{2} + \frac{9}{10} \cdot q^{3} + \frac{3}{2}\cdot q^{4} + q^{5}[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.