Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

At an amusement park, a 7.00 kg swimmer uses a water slide to enter the main pool. The swimmer starts at rest, slides without friction, and descends through a vertical height of 0.40 m. Find the total energy present when the swimmer is at the top of the slide.

Sagot :

Space

Answer:

27.44 J

Explanation:

We can find the energy at the top of the slide by using the potential energy equation:

  • PE = mgh

At the top of the slide, the swimmer has 0 kinetic energy and maximum potential energy.

The swimmer's mass is given as 7.00 kg.

The acceleration due to gravity is 9.8 m/s².

The (vertical) height of the water slide is 0.40 m.

Substitute these values into the potential energy equation:

  • PE = (7.00)(9.8)(0.40)
  • PE = 27.44

Since there is 0 kinetic energy at the top of the slide, the total energy present is the swimmer's potential energy.

Therefore, the answer is 27.44 J of energy when the swimmer is at the top of the slide.