Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
a) The ball reaches it's maximum height after 3 seconds.
b) The maximum height of the ball is of 151 feet.
Step-by-step explanation:
Vertex of a quadratic function:
Suppose we have a quadratic function in the following format:
[tex]f(x) = ax^{2} + bx + c[/tex]
It's vertex is the point [tex](x_{v}, y_{v})[/tex]
In which
[tex]x_{v} = -\frac{b}{2a}[/tex]
[tex]y_{v} = -\frac{\Delta}{4a}[/tex]
Where
[tex]\Delta = b^2-4ac[/tex]
If a<0, the vertex is a maximum point, that is, the maximum value happens at [tex]x_{v}[/tex], and it's value is [tex]y_{v}[/tex].
In this question:
The height of the ball is modeled by:
[tex]h(t) = -16t^2 + 96t + 7[/tex]
So a quadratic equation with [tex]a = -16, b = 96, c = 7[/tex]
a) After how many seconds will the ball reach its maximum height?
t-value of the vertex. So
[tex]t_{v} = -\frac{96}{2(-16)} = 3[/tex]
The ball reaches it's maximum height after 3 seconds.
b) What is that maximum height?
h of the vertex.
[tex]\Delta = b^2 - 4ac = (96)^2 - 4(-16)(7) = 9664[/tex]
[tex]h_{v} = -\frac{9664}{4(-16)} = 604[/tex]
The maximum height of the ball is of 151 feet.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.