Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
Explanation:
You didn't fill in the proper masses which is why you never got an answer to this. But that's ok...I got you. I happen to know what they are! We will use the universal law of gravitation and the gravitational constant to solve this.
[tex]F_g=\frac{Gm_1m_2}{r^2}[/tex] and filling in:
[tex]F_g=\frac{(6.67*10^{-11})(5.98*10^{24})(7.36*10^{22})}{(3.84*10^8)^2}[/tex] The denominator is the radius of the earth plus the radius of the moon plus the distance between their surfaces, just FYI.
That gives us that
[tex]F_g=1.99*10^{20}N[/tex] Not sure what your choices entail, but I'd have to say, taking into consideration that maybe your problem didn't figure in the distance between the surfaces, you'd be at choice B.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.