Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

You used (formula in screenshot) when calculating variance and standard deviation. An alternative formula for the standard deviation that is sometimes convenient for hand calculations is shown below. You can find the sample variance by dividing the sum of squares by n-​1, and the sample standard deviation by finding the square root of the sample variance. Complete parts​ (a) and​ (b) below.

You Used Formula In Screenshot When Calculating Variance And Standard Deviation An Alternative Formula For The Standard Deviation That Is Sometimes Convenient F class=

Sagot :

Answer:

[tex]Varianve = 3.842[/tex]

[tex]SD = 1.960[/tex]

Step-by-step explanation:

Given

See attachment for data

First, calculate [tex]\sum x^2[/tex]

[tex]\sum x^2 = 18^2 + 17^2 +20^2 + 19^2 + 20^2 + 16^2 + 16^2 + 15^2 + 18^2+14^2 +19^2 + 19^2+18^2+17^2 + 16^2+20^2+16^2+18^2+14^2+20^2[/tex]

[tex]\sum x^2 = 6198[/tex]

Calculate [tex]\sum x[/tex]

[tex]\sum x = 18 + 17 +20 + 19 + 20 + 16 + 16 + 15 + 18+14 +19 + 19+18+17 + 16+20+16+18+14+20[/tex]

[tex]\sum x = 350[/tex]

So, we have:

[tex]SS_x = \sum x^2 -\frac{(\sum x)^2}{n}[/tex]

[tex]SS_x = 6198 -\frac{350^2}{20}[/tex]

[tex]SS_x = 6198 -\frac{122500}{20}[/tex]

[tex]SS_x = 6198 -6125[/tex]

[tex]SS_x = 73[/tex]

Solving (a): The variance

[tex]Varianve = \frac{SS_x}{n-1}[/tex]

[tex]Varianve = \frac{73}{20-1}[/tex]

[tex]Varianve = \frac{73}{19}[/tex]

[tex]Varianve = 3.842[/tex]

Solving (b): The standard deviation

[tex]SD = \sqrt{Variance}[/tex]

[tex]SD = \sqrt{3.842}[/tex]

[tex]SD = 1.960[/tex]

View image MrRoyal