Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
The family of possible values for [tex]p[/tex] are:
[tex](-\infty, -4) \,\cup \,(7, +\infty)[/tex]
Step-by-step explanation:
By Linear Algebra, we can calculate the angle by definition of dot product:
[tex]\cos \theta = \frac{\vec a\,\bullet\,\vec b}{\|\vec a\|\cdot \|\vec b\|}[/tex] (1)
Where:
[tex]\theta[/tex] - Angle between vectors, in sexagesimal degrees.
[tex]\|\vec a\|, \|\vec b \|[/tex] - Norms of vectors [tex]\vec {a}[/tex] and [tex]\vec{b}[/tex]
If [tex]\theta[/tex] is acute, then the cosine function is bounded between 0 a 1 and if we know that [tex]\vec {a} = (p, 3, -7)[/tex] and [tex]\vec {b} = (p, -p, 4)[/tex], then the possible values for [tex]p[/tex] are:
Minimum ([tex]\cos \theta = 0[/tex])
[tex]\frac{p^{2}-3\cdot p -28}{\sqrt{p^{2}+58}\cdot \sqrt{2\cdot p^{2}+16}} > 0[/tex]
Maximum ([tex]\cos \theta = 1[/tex])
[tex]\frac{p^{2}-3\cdot p -28}{\sqrt{p^{2}+58}\cdot \sqrt{2\cdot p^{2}+16}} < 1[/tex]
With the help of a graphing tool we get the family of possible values for [tex]p[/tex] are:
[tex](-\infty, -4) \,\cup \,(7, +\infty)[/tex]

The dot product between the two vectors is the product of the magnitude between them times cosine angle.
The possible values for [tex]p[/tex] is (7,-4), when the angle is acute between [tex]a[/tex] and [tex]b[/tex].
To find the value of [tex]p[/tex] we need to perform the dot product of two equation.
How do you multiply vector in dot product?
The dot product between the two vectors is the product of the magnitude between them times cosine angle
Given information-
The vector equation given in the problem is,
[tex]a = p\hat i +3\hat j - 7\hat k[/tex]
[tex]b = p\hat i - p\hat j +4\hat k[/tex]
For acute angle, the dot product of [tex]a,b[/tex] less than equal to zero.
Thus,
[tex]a .b<0[/tex]
Put the values,
[tex](p\hat i +3\hat j - 7\hat k)(p\hat i - p\hat j +4\hat k)<0[/tex]
In the dot product the multiplication of different unit vector is zero. Thus,
[tex]p^2-3p-28<0[/tex]
Factorize above equation using the split the middle term method as,
[tex]p^2-7p+4p-28<0\\(p-7)(p+4)<0[/tex]
As the factor of the above equation is 7 and -4.
Thus the possible values for [tex]p[/tex] is (7,-4), when the angle is acute between [tex]a[/tex] and [tex]b[/tex].
Learn more about the dot product here;
https://brainly.com/question/9956772
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.