Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
The quadratic function represented by the graph is [tex]y = x^{2}-6\cdot x + 8[/tex].
Step-by-step explanation:
Parabolae are defined by second order polynomials, that is, a polynomial of the form:
[tex]y = a\cdot x^{2} + b\cdot x + c[/tex] (1)
Where:
[tex]x[/tex] - Independent variable.
[tex]y[/tex] - Dependent variable.
[tex]a, b, c[/tex] - Coefficients.
By Algebra, we know can calculate the set of all coefficients based on the knowledge of three distinct points. According to the graph, we have the following points: [tex](x_{1}, y_{1}) = (2, 0)[/tex], [tex](x_{2}, y_{2}) = (4, 0)[/tex] and [tex](x_{3}, y_{3}) = (6, 8)[/tex], and the resulting system of linear equations is:
[tex]4\cdot a + 2\cdot b + c = 0[/tex] (2)
[tex]16\cdot a + 4\cdot b + c = 0[/tex] (3)
[tex]36\cdot a + 6\cdot b + c = 8[/tex] (4)
The solution of the system of linear equations is:
[tex]a = 1, b = -6, c = 8[/tex]
Hence, the quadratic function represented by the graph is [tex]y = x^{2}-6\cdot x + 8[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.