Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
The answer is below
Explanation:
Prove that:
[tex]\frac{1+sinQ}{1-sinQ}=(secQ + tanQ)^2[/tex]
Trigonometric identities are equalities involving trigonometric functions for which both sides of the equality are equal and defined. Some trigonometric identities are:
sin²Ф + cos²Ф = 1; 1/cosФ = secФ; 1/sinФ = cosecФ; cosФ/sinФ = cotФ; 1 + tan²Ф = sec²Ф
Given:
[tex]\frac{1+sinQ}{1-sinQ}\\\\Divide\ through\ by \ cosQ:\\\\ \frac{\frac{1}{cosQ} +\frac{sinQ}{cosQ} }{\frac{1}{cosQ} -\frac{sinQ}{cosQ} }=\frac{secQ+tanQ}{secQ-tanQ}\\\\Next, rationalize\ the\ denominator\ by \ multiplying\ the\ numerator \ and\ \\denominator\ by\ secQ+tanQ:\\\\\frac{secQ+tanQ}{secQ-tanQ}*\frac{secQ+tanQ}{secQ+tanQ}=\frac{(secQ+tanQ)^2}{sec^2Q+secQtanQ-secQtanQ-tan^2Q}\\\\=\frac{(secQ+tanQ)^2}{sec^2Q-tan^2Q} ;\ But sec^2Q-tan^2Q=1,hence:\\\\[/tex]
[tex]\frac{(secQ+tanQ)^2}{sec^2Q-tan^2Q} =\frac{(secQ+tanQ)^2}{1}=(secQ+tanQ)^2\\\\\frac{1+sinQ}{1-sinQ}=(secQ+tanQ)^2[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.