At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
The answer is below
Explanation:
Prove that:
[tex]\frac{1+sinQ}{1-sinQ}=(secQ + tanQ)^2[/tex]
Trigonometric identities are equalities involving trigonometric functions for which both sides of the equality are equal and defined. Some trigonometric identities are:
sin²Ф + cos²Ф = 1; 1/cosФ = secФ; 1/sinФ = cosecФ; cosФ/sinФ = cotФ; 1 + tan²Ф = sec²Ф
Given:
[tex]\frac{1+sinQ}{1-sinQ}\\\\Divide\ through\ by \ cosQ:\\\\ \frac{\frac{1}{cosQ} +\frac{sinQ}{cosQ} }{\frac{1}{cosQ} -\frac{sinQ}{cosQ} }=\frac{secQ+tanQ}{secQ-tanQ}\\\\Next, rationalize\ the\ denominator\ by \ multiplying\ the\ numerator \ and\ \\denominator\ by\ secQ+tanQ:\\\\\frac{secQ+tanQ}{secQ-tanQ}*\frac{secQ+tanQ}{secQ+tanQ}=\frac{(secQ+tanQ)^2}{sec^2Q+secQtanQ-secQtanQ-tan^2Q}\\\\=\frac{(secQ+tanQ)^2}{sec^2Q-tan^2Q} ;\ But sec^2Q-tan^2Q=1,hence:\\\\[/tex]
[tex]\frac{(secQ+tanQ)^2}{sec^2Q-tan^2Q} =\frac{(secQ+tanQ)^2}{1}=(secQ+tanQ)^2\\\\\frac{1+sinQ}{1-sinQ}=(secQ+tanQ)^2[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.