Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
a) F = [tex]\frac{\pi d^2B^2lv}{16p}[/tex]
b) attached below
c) 0.037 m/s
Explanation:
a) Determine the magnetic "drag" force acting at the moment
speed = v
first step: determine current in the loop
I = [tex]\frac{\pi d^2}{16pl} B lv[/tex] ----- ( 1 )
given that the current will induce force on the three sides of the loop found in the magnetic field
forces on vertical sides = + opposite
we will cancel out
hence equation 1 becomes
F = [tex]\frac{\pi d^2B^2lv}{16p}[/tex] ( according to Lenz law we can say that the direction of force is upwards and this force will slow down the decrease in flux )
b) Determine the formula for Vt
attached below
c) Find Vt
given :
B = 0.80 T
density of copper = 8.9 * 10^3 kg/m^3
resistivity of copper = 1.68 * 10^-8 Ωm
∴ Vt = 16 ( 8.9 * 10^3 kg/m^3 ) ( 1.68 * 10^-8 Ωm ) ( 9.8 m/s^2 ) / ( 0.08 T)^2
= 0.037 m/s
![View image batolisis](https://us-static.z-dn.net/files/d8b/8ff865cdb0f04b8dbdb27710c16970c5.jpeg)
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.