Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
The fourth term of the given expansion is [tex]-280x^{3}[/tex].
What is binomial expansion?
The binomial expansion is used to expand and write the terms which are equals to the natural number exponent of the sum or differences of two terms.
The general term of the binomial expansion is given by
[tex]T_{r+1} =nC_{r} x^{n-r} y^{r}[/tex]
According to the given question
We have,
A binomial expression, [tex](1-2x)^{n}[/tex]
and, the binomial coefficients are taken from the row of Pascal's triangle 1 6 15 20 15 6 1
⇒ n = 7
Therefore,
The fourth term of the expansion of [tex](1-2x)^{n}[/tex] is given by
[tex]T_{3+1} = 7C_{3} 1^{7-3} (-2x)^{3}[/tex]
[tex]T_{4} =\frac{(7)(6)(5)(4)(3!)}{3!(4)(3)(2)} (1)(-2x)^{3}[/tex]
[tex]T{4} = -280x^{3}[/tex]
Hence, the fourth term of the given expansion [tex](1-2x)^{3}[/tex] is [tex]-280x^{3}[/tex].
Learn more about the binomial expansion here:
https://brainly.com/question/12249986
#SPJ2
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.