Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
i) Cases with Important Inertia
Large whale ( a ) , Flying duck ( b ) , Large dragonfly ( c )
ii) Cases where viscous effects dominate
Invertebrate larva ( d ) , bacterium ( e )
iii) Cases where flow is Laminar ( cases where Re is < 2,100 )
Invertebrate larva ( d ), bacterium ( e )
iv) Cases where flow is turbulent ( case Re is > 2,100 )
Large whale (a) , Flying duck (b), Large dragonfly ( c ),
Explanation:
Reynolds number is the the ratio of Initial forces to viscous forces, hence cases with Large Reynolds number ( > 2100 ) have their inertial forces greater than viscous forces, therefore we can say the Inertia is more important , while cases with smaller Reynolds number ( < 2100 ) have the viscous forces greater than the inertial forces therefore in such case the viscous effect is more important
i) Cases with Important Inertia
Large whale ( a ) , Flying duck ( b ) , Large dragonfly ( c )
ii) Cases where viscous effects dominate
Invertebrate larva ( d ) , bacterium ( e )
iii) Cases where flow is Laminar ( cases where Re is < 2,100 )
Invertebrate larva ( d ), bacterium ( e )
iv) Cases where flow is turbulent ( case Re is > 2,100 )
Large whale (a) , Flying duck (b), Large dragonfly ( c ),
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.