Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
a) The 98% Confidence Interval for the proportion of all students that prefer ebooks is (0.55, 0.65).
b) The margin of error is of 0.05.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is of:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In a sample of 400 students, 60% of them prefer eBooks.
This means that [tex]n = 400, \pi = 0.6[/tex]
98% confidence level
So [tex]\alpha = 0.02[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.02}{2} = 0.99[/tex], so [tex]Z = 2.054[/tex].
Margin of error -> Question b:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]M = 2.054\sqrt{0.6*0.4}{400}}[/tex]
[tex]M = 0.05[/tex]
The margin of error is of 0.05.
A.Find 98% Confidence Interval for the proportion of all students that prefer ebooksb.
Sample proportion plus/minus the margin of error.
0.6 - 0.05 = 0.55
0.6 + 0.05 = 0.65
The 98% Confidence Interval for the proportion of all students that prefer ebooks is (0.55, 0.65).
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.