Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
The answer is below
Step-by-step explanation:
∠EFG and ∠GFH are a linear pair, m∠EFG = 3n+ 21, and m∠GFH = 2n + 34. What are m∠EFG and m∠GFH?
Solution:
Two angles are said to form a linear pair if they share a base. Linear pair angles are adjacent angles formed along a line as a result of the intersection of two lines. Linear pairs are always supplementary (that is they add up to 180°).
m∠EFG = 3n + 21, m∠GFH = 2n + 34. Both angles form linear pairs, hence:
m∠EFG + m∠GFH = 180°
3n + 21 + (2n + 34) = 180
3n + 2n + 21 + 34 = 180
5n + 55 = 180
5n = 125
n = 25
Therefore, m∠EFG = 3(25) + 21 = 96°, m∠GFH = 2(25) + 34 = 84°
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.