Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

A spring stretches 0.150 m when a 0.30 kg mass is hung from it. The spring is then stretched an additional 0.100 m from this equilibrium point and released. Determine
a) the spring constant
b) the maximum velocity of the mass
c) the maximum acceleration of the mass
d) the total mechanical energy of the mass
e) the period and frequency of the mass and spring and
f) the equation of time-dependent vertical position of the mass

Sagot :

Answer:

a)  [tex]k=19.6N/m[/tex]

b)  [tex]V_m=0.81m/s[/tex]

c)  [tex]a_m=6.561m/s^2[/tex]

d)  [tex]K.E=0.096J[/tex]

e)  [tex]T=0.78sec[/tex] &[tex]F=1.29sec[/tex]

f)   [tex]mx'' + kx' =0[/tex]

Explanation:

From the question we are told that:

Stretch Length [tex]L=0.150m[/tex]

Mass [tex]m=0.30kg[/tex]

Total stretch length[tex]L_t=0.150+0.100=>0.25[/tex]

a)

Generally the equation for Force F on the spring is mathematically given by

[tex]F=-km\\\\k=F/m\\\\k=\frac{m*g}{x}\\\\k=\frac{0.30*9.8}{0.15}[/tex]

[tex]k=19.6N/m[/tex]

b)Generally the equation for Max Velocity of Mass on the spring is mathematically given by

[tex]V_m=A\omega[/tex]

Where

A=Amplitude

[tex]A=0.100m[/tex]

And

[tex]\omega=angulat Velocity\\\\\omega=\sqrt{\frac{k}{m}}\\\\\omega=\sqrt{\frac{19.6}{0.3}}\\\\\omega=8.1rad/s[/tex]

Therefore

[tex]V_m=A\omega\\\\V_m=8.1*0.1[/tex]

[tex]V_m=0.81m/s[/tex]

c)

Generally the equation for Max Acceleration of Mass on the spring is mathematically given by

[tex]a_m=\omega^2A[/tex]

[tex]a_m=8.1^2*0.1[/tex]

[tex]a_m=6.561m/s^2[/tex]

d)

Generally the equation for Total mechanical energy of Mass on the spring is mathematically given by

[tex]K.E=\frac{1}{2}mv^2[/tex]

[tex]K.E=\frac{1}{2}*0.3*0.8^2[/tex]

[tex]K.E=0.096J[/tex]

e)

Generally the equation for  the period T is mathematically given by

[tex]\omega=\frac{2\pi}{T}[/tex]

[tex]T=\frac{2*3.142}{8.1}[/tex]

[tex]T=0.78sec[/tex]

Generally the equation for  the Frequency is mathematically given by

[tex]F=\frac{1}{T}[/tex]

[tex]F=1.29sec[/tex]

f)

Generally the Equation of time-dependent vertical position of the mass is mathematically given by

[tex]mx'' + kx' =0[/tex]

Where

'= signify order of differentiation