At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Solution :
Let [tex]$v_0$[/tex] be the unit vector in the direction parallel to the plane and let [tex]$F_1$[/tex] be the component of F in the direction of [tex]v_0[/tex] and [tex]F_2[/tex] be the component normal to [tex]v_0[/tex].
Since, [tex]|v_0| = 1,[/tex]
[tex]$(v_0)_x=\cos 60^\circ= \frac{1}{2}$[/tex]
[tex]$(v_0)_y=\sin 60^\circ= \frac{\sqrt 3}{2}$[/tex]
Therefore, [tex]v_0 = \left<\frac{1}{2},\frac{\sqrt 3}{2}\right>[/tex]
From figure,
[tex]|F_1|= |F| \cos 30^\circ = 10 \times \frac{\sqrt 3}{2} = 5 \sqrt3[/tex]
We know that the direction of [tex]F_1[/tex] is opposite of the direction of [tex]v_0[/tex], so we have
[tex]$F_1 = -5\sqrt3 v_0$[/tex]
[tex]$=-5\sqrt3 \left<\frac{1}{2},\frac{\sqrt3}{2} \right>$[/tex]
[tex]$= \left<-\frac{5 \sqrt3}{2},-\frac{15}{2} \right>$[/tex]
The unit vector in the direction normal to the plane, [tex]v_1[/tex] has components :
[tex]$(v_1)_x= \cos 30^\circ = \frac{\sqrt3}{2}$[/tex]
[tex]$(v_1)_y= -\sin 30^\circ =- \frac{1}{2}$[/tex]
Therefore, [tex]$v_1=\left< \frac{\sqrt3}{2}, -\frac{1}{2} \right>$[/tex]
From figure,
[tex]|F_2 | = |F| \sin 30^\circ = 10 \times \frac{1}{2} = 5[/tex]
∴ [tex]F_2 = 5v_1 = 5 \left< \frac{\sqrt3}{2}, - \frac{1}{2} \right>[/tex]
[tex]$=\left<\frac{5 \sqrt3}{2},-\frac{5}{2} \right>$[/tex]
Therefore,
[tex]$F_1+F_2 = \left< -\frac{5\sqrt3}{2}, -\frac{15}{2} \right> + \left< \frac{5 \sqrt3}{2}, -\frac{5}{2} \right>$[/tex]
[tex]$=<0,- 10> = F$[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.