Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

A flat (unbanked) curve on a highway has a radius of 260 mm . A car successfully rounds the curve at a speed of 32 m/sm/s but is on the verge of skidding out.

Required:
a. If the coefficient of static friction between the car’s tires and the road surface were reduced by a factor of 2, with what maximum speed could the car round the curve?
b. Suppose the coefficient of friction were increased by a factor of 2; what would be the maximum speed?


Sagot :

I suppose you meant to say the radius of the curve is 260 m, not mm?

There are 3 forces acting on the car as it makes the turn,

• its weight mg pulling it downward;

• the normal force exerted by the road pointing upward, also with magnitude mg since the car is in equilibrium in the vertical direction; and

• static friction keeping the car from skidding with magnitude µmg (since it's proportional to the normal force), pointing horizontally toward the center of the curve.

By Newton's second law, the net force on the car acting in the horizontal direction is

F = ma   =>   µmg = ma   =>   a = µg

where a is the car's radial acceleration given by

a = v ^2 / R

with v = the car's tangential speed and R = radius of the curve. At the start, the car's radial acceleration is

a = (32 m/s)^2 / (260 m) ≈ 3.94 m/s^2

(a) If µ were reduced by a factor of 2, then the radial acceleration would also be halved:

1/2 a = 1/2 µg

Then the car can have a maximum speed v of

1/2 a = v ^2 / R   =>   v = √(aR/2) = √((3.94 m/s^2) (260 m) / 2) ≈ 22.6 m/s

(b) If µ were increased by a factor of 2, then the acceleration would also get doubled. Then the maximum speed v would be

2a = v ^2 / R   =>   v = √(2aR) = √(2 (3.94 m/s^2) (260 m)) ≈ 45.3 m/s

We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.