At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
I suppose you meant to say the radius of the curve is 260 m, not mm?
There are 3 forces acting on the car as it makes the turn,
• its weight mg pulling it downward;
• the normal force exerted by the road pointing upward, also with magnitude mg since the car is in equilibrium in the vertical direction; and
• static friction keeping the car from skidding with magnitude µmg (since it's proportional to the normal force), pointing horizontally toward the center of the curve.
By Newton's second law, the net force on the car acting in the horizontal direction is
F = ma => µmg = ma => a = µg
where a is the car's radial acceleration given by
a = v ^2 / R
with v = the car's tangential speed and R = radius of the curve. At the start, the car's radial acceleration is
a = (32 m/s)^2 / (260 m) ≈ 3.94 m/s^2
(a) If µ were reduced by a factor of 2, then the radial acceleration would also be halved:
1/2 a = 1/2 µg
Then the car can have a maximum speed v of
1/2 a = v ^2 / R => v = √(aR/2) = √((3.94 m/s^2) (260 m) / 2) ≈ 22.6 m/s
(b) If µ were increased by a factor of 2, then the acceleration would also get doubled. Then the maximum speed v would be
2a = v ^2 / R => v = √(2aR) = √(2 (3.94 m/s^2) (260 m)) ≈ 45.3 m/s
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.