Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
I suppose you meant to say the radius of the curve is 260 m, not mm?
There are 3 forces acting on the car as it makes the turn,
• its weight mg pulling it downward;
• the normal force exerted by the road pointing upward, also with magnitude mg since the car is in equilibrium in the vertical direction; and
• static friction keeping the car from skidding with magnitude µmg (since it's proportional to the normal force), pointing horizontally toward the center of the curve.
By Newton's second law, the net force on the car acting in the horizontal direction is
F = ma => µmg = ma => a = µg
where a is the car's radial acceleration given by
a = v ^2 / R
with v = the car's tangential speed and R = radius of the curve. At the start, the car's radial acceleration is
a = (32 m/s)^2 / (260 m) ≈ 3.94 m/s^2
(a) If µ were reduced by a factor of 2, then the radial acceleration would also be halved:
1/2 a = 1/2 µg
Then the car can have a maximum speed v of
1/2 a = v ^2 / R => v = √(aR/2) = √((3.94 m/s^2) (260 m) / 2) ≈ 22.6 m/s
(b) If µ were increased by a factor of 2, then the acceleration would also get doubled. Then the maximum speed v would be
2a = v ^2 / R => v = √(2aR) = √(2 (3.94 m/s^2) (260 m)) ≈ 45.3 m/s
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.