Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
The surveyor is 36.076 kilometers far from her camp and her bearing is 16.840° (standard form).
Step-by-step explanation:
The final position of the surveyor is represented by the following vectorial sum:
[tex]\vec r = \vec r_{1} + \vec r_{2} + \vec r_{3}[/tex] (1)
And this formula is expanded by definition of vectors in rectangular and polar form:
[tex](x,y) = r_{1}\cdot (\cos \theta_{1}, \sin \theta_{1}) + r_{2}\cdot (\cos \theta_{2}, \sin \theta_{2})[/tex] (1b)
Where:
[tex]x, y[/tex] - Resulting coordinates of the final position of the surveyor with respect to origin, in kilometers.
[tex]r_{1}, r_{2}[/tex] - Length of each vector, in kilometers.
[tex]\theta_{1}, \theta_{2}[/tex] - Bearing of each vector in standard position, in sexagesimal degrees.
If we know that [tex]r_{1} = 42\,km[/tex], [tex]r_{2} = 28\,km[/tex], [tex]\theta_{1} = 32^{\circ}[/tex] and [tex]\theta_{2} = 154^{\circ}[/tex], then the resulting coordinates of the final position of the surveyor is:
[tex](x,y) = (42\,km)\cdot (\cos 32^{\circ}, \sin 32^{\circ}) + (28\,km)\cdot (\cos 154^{\circ}, \sin 154^{\circ})[/tex]
[tex](x,y) = (35.618, 22.257) + (-25.166, 12.274)\,[km][/tex]
[tex](x,y) = (10.452, 34.531)\,[km][/tex]
According to this, the resulting vector is locating in the first quadrant. The bearing of the vector is determined by the following definition:
[tex]\theta = \tan^{-1} \frac{10.452\,km}{34.531\,km}[/tex]
[tex]\theta \approx 16.840^{\circ}[/tex]
And the distance from the camp is calculated by the Pythagorean Theorem:
[tex]r = \sqrt{(10.452\,km)^{2}+(34.531\,km)^{2}}[/tex]
[tex]r = 36.078\,km[/tex]
The surveyor is 36.076 kilometers far from her camp and her bearing is 16.840° (standard form).
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.