Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
[tex]x \approx 2.278863[/tex]
Step-by-step explanation:
Required
The positive root of [tex]3\sin(x) = x[/tex]
Equate to 0
[tex]0 = x -3\sin(x)[/tex]
So, we have our function to be:
[tex]h(x) = x -3\sin(x)[/tex]
Differentiate the above function:
[tex]h'(x) = 1 -3\cos(x)[/tex]
Using Newton's method of approximation, we have:
[tex]x_{n+1} = x_n - \frac{h(x_n)}{h'(x_n)}[/tex]
Plot the graph of [tex]h(x) = x -3\sin(x)[/tex] to get [tex]x_1[/tex] --- see attachment for graph
From the attached graph, the first value of x is at 2.2; so:
[tex]x_1 = 2.2[/tex]
So, we have:
[tex]x_{n+1} = x_n - \frac{h(x_n)}{h'(x_n)}[/tex]
[tex]x_{1+1} = x_1 - \frac{h(x_1)}{h'(x_1)}[/tex]
[tex]x_{2} = 2.2 - \frac{2.2 -3\sin(2.2)}{1 -3\cos(2.2)} = 2.28153641[/tex]
The process will be repeated until the digit in the 6th decimal place remains unchanged
[tex]x_{3} = 2.28153641 - \frac{2.28153641 -3\sin(2.28153641)}{1 -3\cos(2.28153641)} = 2.2788654[/tex]
[tex]x_{4} = 2.2788654 - \frac{2.2788654 -3\sin(2.2788654)}{1 -3\cos(2.2788654)} = 2.2788627[/tex]
[tex]x_{5} = 2.2788627 - \frac{2.2788627-3\sin(2.2788627)}{1 -3\cos(2.2788627)} = 2.2788627[/tex]
Hence:
[tex]x \approx 2.278863[/tex]

Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.