Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Given:
Center of a circle is at point C(-1,2).
AB is the diameter of the circle.
Coordinates of the point A are A(2,6).
To find:
The coordinates of point B.
Solution:
Let the coordinates of point B are (a,b).
If AB is the diameter of the circle, then A and B are end points of diameter of the circle and the center C is the midpoint of AB.
[tex]Midpoint=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)[/tex]
Point C = Midpoint of AB
[tex](-1,2)=\left(\dfrac{2+a}{2},\dfrac{6+b}{2}\right)[/tex]
On comparing both sides, we get
[tex]\dfrac{2+a}{2}=-1[/tex]
[tex]2+a=-1\times 2[/tex]
[tex]a=-2-2[/tex]
[tex]a=-4[/tex]
Similarly,
[tex]\dfrac{6+b}{2}=2[/tex]
[tex]6+b=2\times 2[/tex]
[tex]b=4-6[/tex]
[tex]b=-2[/tex]
Therefore, the coordinates of point B are (-4,-2).
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.