At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Some runners train with parachutes that trail behind them to provide a large drag force. These parachutes are designed to have a large drag coefficient. One model expands to a square 1.8 mm on a side, with a drag coefficient of 1.4. A runner completes a 240 mm run at 6.0 m/s with this chute trailing behind.

Required:
How much thermal energy is added to the air by the drag force?

Sagot :

Answer:

by the drag force, 2.4004512 × 10⁻⁵ J is added to the air.

Explanation:

Given the data in the question;

drag coefficient of Cd = 1.4

speed v = 6.0 m/s

One model expands to a square 1.8 mm on a side

Area A = 1.8 × 1.8 = 3.24 mm² = 3.24 × 10⁻⁶ m²

distance travelled s = 240 mm = 0.24 m

we know that; density of air e = 1.225 kg/m³

Now,

Dragging force F[tex]_D[/tex] = ( Cd × e × v² × A  ) / 2

thermal energy = F[tex]_D[/tex] × s

so

thermal energy = ( 1.4 × 1.225  × (6)² × (3.24 × 10⁻⁶) × 0.24  ) / 2

thermal energy = ( 4.8009024 × 10⁻⁵ ) / 2

thermal energy = 2.4004512 × 10⁻⁵ J

Therefore,  by the drag force, 2.4004512 × 10⁻⁵ J is added to the air.

Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.