Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
[tex]\displaystyle \int\limits^0_{\pi} {\sin (2x)} \, dx = 0[/tex]
General Formulas and Concepts:
Calculus
Integration
- Integrals
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int\limits^0_{\pi} {\sin (2x)} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = 2x[/tex]
- [u] Differentiate: [tex]\displaystyle du = 2 \ dx[/tex]
- [Bounds] Switch: [tex]\displaystyle \left \{ {{x = 0 ,\ u = 2(0) = 0} \atop {x = \pi ,\ u = 2 \pi}} \right.[/tex]
Step 3: Integrate Pt. 2
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^0_{\pi} {\sin (2x)} \, dx = \frac{1}{2} \int\limits^0_{\pi} {2 \sin (2x)} \, dx[/tex]
- [Integral] U-Substitution: [tex]\displaystyle \int\limits^0_{\pi} {\sin (2x)} \, dx = \frac{1}{2} \int\limits^0_{2 \pi} {\sin u} \, du[/tex]
- Trigonometric Integration: [tex]\displaystyle \int\limits^0_{\pi} {\sin (2x)} \, dx = \frac{1}{2}(-\cos u) \bigg| \limits^0_{2 \pi}[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^0_{\pi} {\sin (2x)} \, dx = \frac{1}{2}(0)[/tex]
- Simplify: [tex]\displaystyle \int\limits^0_{\pi} {\sin (2x)} \, dx = 0[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.