Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
[tex]\displaystyle \int\limits^0_{\pi} {\sin (2x)} \, dx = 0[/tex]
General Formulas and Concepts:
Calculus
Integration
- Integrals
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int\limits^0_{\pi} {\sin (2x)} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = 2x[/tex]
- [u] Differentiate: [tex]\displaystyle du = 2 \ dx[/tex]
- [Bounds] Switch: [tex]\displaystyle \left \{ {{x = 0 ,\ u = 2(0) = 0} \atop {x = \pi ,\ u = 2 \pi}} \right.[/tex]
Step 3: Integrate Pt. 2
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^0_{\pi} {\sin (2x)} \, dx = \frac{1}{2} \int\limits^0_{\pi} {2 \sin (2x)} \, dx[/tex]
- [Integral] U-Substitution: [tex]\displaystyle \int\limits^0_{\pi} {\sin (2x)} \, dx = \frac{1}{2} \int\limits^0_{2 \pi} {\sin u} \, du[/tex]
- Trigonometric Integration: [tex]\displaystyle \int\limits^0_{\pi} {\sin (2x)} \, dx = \frac{1}{2}(-\cos u) \bigg| \limits^0_{2 \pi}[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^0_{\pi} {\sin (2x)} \, dx = \frac{1}{2}(0)[/tex]
- Simplify: [tex]\displaystyle \int\limits^0_{\pi} {\sin (2x)} \, dx = 0[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.