Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
Hence the answers are,
a) Probability that in the past 12 months the car had more than one problem = P(X > 1) is 0.2716.
b) The Probability that in the past 12 months the car had almost two problems = P( X < 2) is 0.9160.
c) The Probability that in the past 12 months the car had zero problems = P(X= 0 ) is 0.3606.
Step-by-step explanation:
Let's take X to be the number of problems per car.
By considering the given statement, X follows a Poisson Distribution with Mean (X) = 1.02.
The Poisson probability formula is :
e Pr( X = k) = e- k! k= 0,1,2...
a)
The Probability that in the past 12 months the car had more than one problem = P(X > 1)
[tex]P(X > 1) =1- P(X < 1) \\\\=1- (P(X = 0) + P(X = 1)-1.021.02 e + 1.021.02 =1-6 0!\\= 1-0.3606 + 0.3678\\= 1-0.7284\\= 0.2716[/tex]
b)
The Probability that in the past 12 months the car had almost two problems = PX < 2)
[tex]Pr(X < 2) = Pr(X = i) = Pr(X = 0) + Pr(X = 1) + Pr(X = 2)\\-1.021.020 -1.021.02 -1.021.02 e e + e + 0! 1! 2!\\= 0.3606 + 0.3678 + 0.1876\\= 0.9160[/tex]
c)
The Probability that in the past 12 months the car had zero problems = P(X= 0 )
[tex]- 1.021.02 e 0!\\= 0.3606[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.